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SECTION 1

INTRODUCTION

Time domain reflectometry measurements in plasmas are

of great interest. This is particularly true in studying the

high density plasma layer which forms around a spacecraft as

it reenters the Earth's atmosphere. It is well established

that heat transfer rates for spacecraft in reentry can be

greatly influenced by flowfield ionization levels.

Knowledge of the ionization level is, therefore, important

during reentry as a function of body station, especially in

the forebody region. Current analytical models are

unverified and incumbered with unproven simplifying

assumptions and, as a result, fall short of providing

dependable electron density predictions.

The Microwave Reflectometer Ionization Sensor (MRIS)

1
Experiment will make use of the microwave reflection

properties of ionized gases to determine levels of electron

density in the forebody shock layer of a reentry vehicle and

to measure the distance from the vehicle at which these

electron densities occur. ....Specifically, the experiment will

locate the onset and presence of critical electron densities

corresponding to selected carrier frequencies by measuring

the amplitude and phase of the reflected signal. The

critical electron density is the density at which a rapid

increase in reflection coefficient occurs. The distance to

the critical density point will be obtained through time

domain reflectometry using 64 equally spaced transmitted

frequencies, occupying a total bandwidth of 2 GHz. At the

receiver, 64 frequency responses are collected and an inverse

1 NASA experiment originally proposed for 1996



fast Fourier transform then provides a time domain impulse

response for the plasma. The propagation delays of the

signals reflected from the ionized flow field will be

measured to determine the stand-off distances to the

location of the critical electron densities detected. The

stand-off distance information for the vehicle will be

compared to the data predicted from the computational fluid

dynamics models for the spacecraft's trajectory. Such a

procedure should work well so long as the properties of the

plasma lamer are constant over the time required for the 64

measurements. Since the positions of the critical electron

densities will fluctuate during measurement periods, it is

desirable to study the effects of any such fluctuations on

the time domain reflectometry response. The purpose of this

paper is to study the effects of time dependent-fluctuations

on time domain reflectometry for a one-dimensional plasma

sheath.

The study of plane waves incident on stable plasma

layers has been investigated by many authors [i-5]. Their

work has been focused on solving the differential equations

which describe the electromagnetic behavior of fields within

these fixed layers. This paper delves into the

electromagnetic behavior of fields within a time-variant

plasma layer. Solutions for continuous inhomogeneous layers

require, in general, numerical techniques. In this paper

the plasma is represented by a one-dimensional dielectric

constant which is allowed to vary in the direction of

propagation. Practical solutions have been obtained using

numerical methods for solving the Helmholtz wave equation

describing propagation through the plasma layer. Sequences

of density profiles have been generated to emulate the

time-dependent behavior of moving density fluctuations. The

plasma has been studied for a range of constituent

transmitted frequencies (64 stepped frequencies), consistent



with the MRIS experiment, and the resulting responses have

been used to synthesize effective time domain responses.

Broadly speaking, this paper is divided into four

parts. Section 2 deals with-the models used for a given

plasma layer which can be represented by a dielectric medium

with a dielectric constant which can have a negative

imaginary part representing losses as explained in reference

6. Section 3 concentrateskon reflection coefficients for

different plasma models. To simulate the time domain

reflectometry response of a fixed one-dimensional cold

plasma sheath, solutions for the electric field of a

normally incident plane wave in a specified electron density

are used. Illustrative cases with simplified profiles with

exact solutions are presented for the reader in this

section. Section 4 looks at simulating the time domain

response of the plasma by mathematically transforming

reflection coefficient measurements made in the frequency

domain. From the responses, propagation delays of the

signals reflected were measured to determine the distances

to the location of the critical electron densities. Section

5 investigates electron density fluctuations and their

effect on time domain responses. For the sake of clarity,

many of the problems treated are greatly simplified. For

instance in Section 3, a homogeneous layer and a linear

layer are examined as illustrative aids for understanding

the solutions for a inhomogeneous plasma layer. The appendix

reviews the time domain theory used in this paper. A

computer program was developed to solve inhomogeneous plasma

layer problems. For propagation studies, a time harmonic

-i_t
wave traveling in the positive z-direction with an e time

convention is assumed throughout the paper. Normal

incidence was chosen to simplify problems and to help focus

on the intent of the paper. Issues and considerations

regarding the MRIS distance-measuring scheme are discussed



in the conclusion.



SECT ION 2

ELECTRON PLASMA MODEL

2.1 Wave Propagation

In the solution of any electromagnetic problem,

Maxwell's equations must be satisfied. As shown in

reference 7, these equations can be used to obtain a

differential equation describing wave propagation through an

arbitrary medium. This differential equation known as the

one-dimensional Helmholtz wave equation is written as

a2E(z) + _2pc(z)E(z) = 0

az 2
(2. i)

where E is the electric field intensity, _ is the radian

frequency, _ is the permeability of the medium, and c is the

dielectric constant of the medium which is shown as a

function of z, the axis along which the electromagnetic

fields propagate. For the case where c does not depend on z

(purely homogeneous dielectric), a time-harmonic wave moving
-i_t

in the positive z-direction, with an e time convention,

results in a solution written as

ikz -ikz (2.2)
E(z) = Ele + E2e

where E 1 and E2 are undetermined constants independent of z

and k, the wavenumber, is

/
k = _ -/_CrCv o ' (2.3)

c is the relative dielectric constant of the medium and c
r o



is the dielectric constant of free space. In the solution

of the wave equation for E as given by equation (2.2), the

first term represents a wave with magnitude E 1 traveling in

the positive z direction, and the second term represents a

wave with magnitude E2 traveling in the negative z

direction.

Now consider a inhomogeneous dielectric, where k varies

with distance such that

k = /_Co_ r(z) (2.4)

and equation (2.2) is no longer valid. The solution cannot

be conveniently expressed as a forward and backward

traveling wave as for the homogeneous dielectric. As shown

later in Section 3, except for certain special cases such as

a linear dependence of c with z (see section 3.2), to find a

solution for the electric field in an inhomogeneous

dielectric, equation (2.1) must be solved numerically.

Z. 2 Properties of Plasma

Let us consider the particular properties of a

partially ionized, but electrically neutral, gas insofar as

they affect the propagation of electromagnetic waves.

Electrons have a natural frequency of oscillation called

the plasma electron frequency or more commonly, the plasma

frequency. It is represented by _N and is defined as

follows [8]:

2
N e

e: , (2.5)
Com e

where c is the permittivity of a vacuum, m is the mass of
o e

6



an electron, Ne is the electron density, and e is the charge

of an eiectron. _...............

_ if temperature effec£s-are not important, a plasma can

be modeled as a dielectric as shown in reference 6, where

c - t (2.6)

is the transmitted frequency. In the general case _N can

be a function of position, thereby, representing a

inhomogeneous plasma. The refractive index of the ionized

medium is given by [5] _ =

1 2 1

n = (Or)2 = 1

Two cases are possible:

Case 1

2
_N

> _N 1 2 > 0 n is real

In this case, wave propagat_onL_takes place.

< 0 n is imaginary
_-< _N 1 2 -

tO

In this case, the fields are evanescent and no wave

propagation occurs. For a signal to be transmitted through a

plasma it is, therefore i necessary that the frequency of the

microwave signal _ be higher than the plasma frequency _N"

7



A wave, therefore, may propagate into a medium having

increasing _N' but as _N approaches _, _rapproaches zero and
a criterion for reflection is met. The point at which the

electron density level causes the plasma frequency _N to
equal _ is termed the turning point in this paper. To

further illustrate the definition of turning point, in

figure 1 the number N of free electrons per unit volume
e

increases slowly in magnitude, reaches a maximum, and then

falls abruptly with further increase in distance. A wave of

a given frequency _ would enter the plasma without

reflection because of the slow change in Ne. When the

density Ne is large enough, however, _N(hl) _ _. Then the

dielectric constants in equation (2.6) vanish and the wave

is reflected. In figure I, h I is the location of the

turning point.

2.3 Reflections

In the previous section, the properties of plasma were

studied, and it was stated that a plasma can be modeled as a

inhomogeneous dielectric. To understand reflections in a

plasma, a formula for the reflection coefficient must be

developed. Before we investigate reflections in the

inhomogeneous dielectric model for the plasma we should

examine a homogeneous dielectric. Consider a homogeneous

dielectric with relative permittivity c a plane uniform
r'

wave progressing in the z-direction and having its electric

vector in the y-direction is completely specified by

equation (2.2) as

Ey(Z) : Eleikz + E2e-ikz (2.8)

8



where k is the wavenumber defined by equation (2.3) as

/
k = /_c

r o
(2.9)

The reflection coefficient at a location z
0

as a complex number [9]

can be defined

-ikz
E2e o

(2. 10)
r(z o) :

ikz
Ele o

With equation (2. I0), equation (2.8) can be written about

the point z as
0

Ey(Z) : E i [eik(z-Zo ) + F(Zo)e-ik(z-Zo) ] , (2. ii)

where El= Eleikzo is the incident field for the traveling

wave at zo. Taking the derivative with respect to z,

equation (2.11) becomes

- Ei [ikeik(z-Zo) -ikr(zo)e-ik(z-Zo )]
(2. 12 )

We define a quantity p at the point zo as

9



aE y (zo)

Oz
p = (2. 13)

Ey(z o)

This factor p is proportional to the admittance of the wave

given by Hx/Ey, where H x is the magnetic field in the x

direction. The resultant equation for the reflection

coefficient at the location z can be written, in terms of
o

p, as

ik-p

r(Zo) = (2.14)
ik+p

For values of p where the magnitude of V is zero in equation

(2.11), the wave simply propagates in the +z direction with

magnitude E i. For values of p where the magnitude of V is

unity, the wave is reflected and travels in the -z direction

with magnitude E i-

Having considered a homogeneous dielectric, we can

investigate the inhomogeneous dielectric model for the

plasma. As mentioned in section 2.1, equation (2.8) is not

valid for inhomogeneous media and reference is made to the

original Helmholtz wave equation. The Helmholtz wave

equation is written here as

a2E (z)
Y + _,2_c(z)E(z) : 0 (2.15)

sz 2

As noted earlier for arbitrary variation of _ with z, it is

not possible to find unique forward and backward waves in

10



equation (2.15). However, the kinds of variation of c with

z are such that there is a region of constant permlttivity

(free space) near the transmitting source. It is only in

such a region of constant c that equation (2.14) is actually

evaluated after having found Ey(Z) everywhere using equation

(2.15). Note that this wave equation has many solutions and

equation (2.8) is a solution for a homogeneous medium only.

To apply this equation for an arbitrarily varying

dielectric, a solution must be found numerically for the

ratio of the field expressions in equation (2.13) and

subsequently for the refleqtion coefficient in equation

(2.14) (see section 3.3). When the reflection coefficient

for the modeled plasma is calculated at several frequencies,

the frequency response for the plasma is known for that

frequency range and the frequency response data can then be

transformed to produce the time. domain response for the

plasma.

11



SECT ION 3

REFLECTION COEFFICIENTS FOR UNIFORM, LINEAR,

AND ARBITRARY INHOMOGENEOUS LAYERS

3.1 Uniform Dielectric Layer

Consider a plane wave incident on a plane uniform

dielectric layer as shown in figure 3. The incident

electric field which is polarized in the y-direction

propagates in the z-direction through free space (Region I)

and is normally incident on the layer (Region II) backed by

free space (Region III). Normal incidence was chosen to

simplify the problem. The electron density profile for the

three regions is shown in figure 4. In free space (Regions

I and III) the electron density is assumed to be zero, and

for the dielectric layer (Region If), extending from z=z I to

z=z2, it is assumed to be NO . The relative permittivity of

the layer cd can be expressed by equations (2.5) and (2.6)

as

2
N e
o (3. I)

Cd= 1 _2cm
0 e

No is chosen so that _N > _ and therefore cd < O. The

relative permittivity for this geometry is shown in figure

5. The field in Region III can be written with unity

magnitude as

E(z) : eiko z ( z >- z2 ) (3.2)

2 Electron density profile consistent with experimental

predictions (see figure 2).

12



and

OE(z) : ikoeiko z ( z >-z 2 )
Oz

(3.3)

At z=z 2, the field can be written as

E(z 2) = eikoz2
(3.4)

and

OE (z2)

az

= ik eikoz2
0

(3.5)

In Region II,

k = ko "_z d (3.6)

and the index of refraction, n can be written as [9]

(3.7)

where c is the relative, permittivity.
r

In general let

c_-_r : nr + ini
(3.8)

13



where nr and n i are the real and imaginary part of the index

of refraction, respectively. Since n is purely imaginary

for the relative permittivity here,

k = ikon i (3.9)

The field in Region II can be written as

E(Z) : Cleikz + C2e-ikz ( z l<- z -< z2 ) (3. I0)

Using equation (3.9), equation (3.10) can be written as

E(z) = Cle-koni z + c2ekoniZ Zl-< z -< z2 (3. ii)

and

_E(z) = -k niCle-koniZ + koniC2ekoniZ
aZ o

(3. 12)

Using the boundary conditions, the tangential electric and

magnetic fields are continuous at the interface z=z 2, we can

equate the field expressions in equations (3.2) and (3.11),

and equations (3.3) and (3.12), respectively, to solve for C 1

and C2 (see reference 2). Note that

14



1

C2 in i -2nikoZ 2
-- = e

C I 1+i_/_
in I

will be very small if niz 2 is several free space

wavelengths. Choosing z2 such that koni(z2-z I) >> i renders

IC21 << IClle-2nikozl. Similiarly, in Region I we can equate

field expressions at z=z I and the reflection coefficient at

z=O can be written as (see reference 2)

C4
r(z=O) - (3.13)

C3

where

C 3 = ni [C [1- i ]ekoniZ (l+in_)2--[ 2 i-_iJ

-Cl[l+in_]e-koniZl(1-in_) ] (3. 14)

and

C4 = _ C211+ . ek°nizl(1-i--K_')z

+ C
l[1-in_l]e-koniZl(l+in_ )]

Since IC21 <<Icl le-2nikoZ1,

(3. 15 )

15



l-lni 2ikoz 1F(z=0) - e (3.16)

l+In i

where

n i = / I (3.17)

3.2 Linear LaMer

In the previous section we calculated the complex

reflection coefficient for a uniform dielectric lamer. Now

consider a linear lamer as shown in figure 6. A plane wave,

polarized in the y-direction and traveling in the z-direction

through free space (Region I, N =0), is incident on the
e

lamer at z=z I. As the wave progresses £hr6ugh the lamer

(Region II), it encounters greater electron densities. At

the outer edge of the lamer, z=z 2, the electron density Ne

is at its maximum, No. As the wave leaves the lamer, it

returns to free space (Region III, N =0). The electron
e

density profile can be expressed as

NO NoZ 1

Ne = z2-zl z z2-zl ( zlS z _z 2 ) (3.18)

and in air as

Ne = 0 ( z-<zI and z_-z2 ). (3. 19)

16



When the electron density N is large enough, the relativee
dielectric constant c in equation (3. I) vanishes and the

r

wave is reflected. Let us call this critical electron

density value Nc. For the dielectric constant to vanish

2 Co me
= (3 20)Nc 2

e

By using equation (3.18) we find this to happen at the

turning point

_2Zome_Z

z = z I + 2 (3.21)

Noe

where

az = z 2 - z I (3.22)

The field in Region III can be written with unity magnitude

as

E(z) = eiko z ( z>-z2 ) (3.23)

and

_E(z) = Ik etkoz ( z>-z2 ) " (3.24)
aZ o

In Region II the Helmholtz wave equation derived in

reference 9 becomes the Airy differential equation as shown

in reference 2. The field expressions can then be written in

terms of Airy functions (see reference 2) as

17



E(u) = ClAi(u) + C2Bi(u) (3.25)

and

aE(u) Cl a i= C2--_Bi (u)_A (u) + (3.26)

where the variable u(z) is defined as

and

2

[ [..-..,}}u(z) =- 1 k2
K1 o

2
Ne

K1 = o
C 2C m

o e

(3.27)

(3.28)

Using the boundary conditions at z=z I and z=z2, we can

equate field expressions and solve for the reflection

coefficient at z=O (see reference 2). At z=O we are in free

space, a region of constant permlttivity, the reflection

coefficient at z=O can be written as

CIL + C2L 2 ]e2ikoZl

r(z=O) = (3.29)

CIL 3 + C2L 4

where

18



L 1 = Ai(u(zl)) -

_Ai (u (z 1))

ik a__z
o au

(3.30)

L2 = Bi(U(Zl)) -

_---Bi(u(zi))

az
iko

(3.31)

L3 = Ai(U(Zl)) +

-_Ai (u (z 1 ))

az
iko

(3.32)

L4 = Bi(u(_.I)) +

_Bi (U(Zl))

az
ik o

(3.33)

To illustrate this exact solution for the reflection

coefficient, a particular linear profile was chosen and is

shown in figure 7. The electron density N begins at the
e

front interface, z=O, at a value of zero and rises to a

value of IxlO 20 electrons per cubic meter at z=14

centimeters (the exit point). The real and imaginary parts

of the reflection coefficient at the front interface are

shown in the right column in table I for 74 to 75 GHz.

3.3 Plasma Layer

In the two previous sections the complex reflection

coefficients for a constant dielectric slab and a linear

lamer were derived exactly. The solution for an arbitrary

inhomogeneous plasma layer requires, in general,

numerical techniques. The plasma is represented bM a

19



scalar, isotropic, and inhomogeneous dielectric constant.

Consider a plasma layer with a electron density profile as

shown in figure 2. An incident electric field, which is

polarized in the y-direction, propagates in free space

(Region I), in the z-direction, and is normally incident on

the plasma layer (Region If) and backed by free space (Region

III) as shown in figure 8. Again, normal incidence was

chosen to simplify the problem of studying the effects of

electron density fluctuations on the time-domain

reflectometer response for a one-dimensional plasma sheath.

The Helmholtz wave equation for the electric field in

a inhomogeneous plasma layer is written as

02_ (z)

2
oz

+ k2(Z)Ey(Z) = 0

where k, the wavenumber, is

(3.34)

k(z) = _ /gz(z) (3.35)

The wave propagates through the plasma (Region II) and is

transmitted to free space (Region III). Since the relative

dielectric constant in free space equals one, the solution

of equation (3.34) in Region Ill is readily found.

To begin the solution, the electric field in Region III

may again be written with unity magnitude as

E (z) = eiko z (3.36)
y

The derivative needed to define p in equation (2.13) is

again given by

20



@E),(z ) Ik z
-- ik e o

az o (3.37)

The field at z=d is assumed to be unity and, therefore, can be

written as

ik d
Ey(Z=d) = e o (3.38)

and

@E (z=d)
Y

- ik eiko d

@z o (3.39)

Equations (3.38) and (3.39) serve as boundary conditions

for solving equation (3.34). Dropping the polarization

notation and making the substitution

OE (z)

S(z) = (3.40)
az

equation (3.34) becomes

-(_ + k2(z)E(z) = 0 (3.41)

Using a fourth-order Runge-Kutta method [i0], equations

(3.40) and (3.41) can be integrated to find the electric

field and its derivative. Once these are found at z=O, p at

21



z=O becomes

aE(z=O 
_Z

P = (3.42)
E(z:O)

as defined by equation (2. 13) and the reflection coefficient at

z=O, in terms of p, is

ik-p

r(z=O) = (3.43)
ik+p

One can note that only the ratio of S(z) to E(z) is actually

needed to compute the reflection coefficient, Thus, the

magnitude of E(z) can be kept near unity by normalizing the

solution at the end of each _unge-Kutta step.

3.4 Verification of Runge-Kutta Method

In section 3.2, a linear profile was chosen to

demonstrate an exact method (Airy-equatlon) of determining

the reflection coefficient. A comparison of the numerical

Runge-Kutta solution and this exact solution is made. The

particular linear profile chosen is shown in figure 7. The

real and imaginary parts of the reflection coefficient at

the front interface for the Runge-Kutta method and the exact

method are shown in table I for 74 to 75 GHz. The

Runge-Kutta method compares favorably with the exact

solution as can be readily seen in table I. In all cases,

the number of Runge-Kutta steps used was tested so that

significant changes in computed values were not observed for

22



larger numbers of steps.

23



SECTION 4

TIME DOMAIN MEASUREMENTS

4.1 Uniform Dielectric LaMer

As stated, the complex reflection coefficient, for a

range of constituent transmitted microwave frequencies, can

be used to synthesize the effective time domain response of

a plasma layer (see Appendix for a review of time domain

theory). Sixty four frequencies, for a bandwidth of 2 GHz,

were chosen to be consistent with the MRIS experiment.

Reflection coefficient data in the frequency domain are

shifted and transformed to give a baseband time domain

response using a decimation-in-time fast inverse Fourier

transform [II]. The resulting time domain response emulates

a baseband continuous wave signal, where the peak magnitude

marks the location of the turning point. The frequency

domain data are windowed by a Kaiser-Bessel window to reduce

unwanted interference, and it should be noted that the peak

response of the data is normalized to the reponse of the

window. To illustrate the technique of using the time

domain response to locate the turning point, the results of

section 3.1 are used for a uniform dielectric layer.

Consider a plane wave incident on a uniform dielectric

slab, with z = -0.5, located i0 cm from the source, as shown
r

in figure 5. A negative permittivity was chosen to simulate

a purely reactive dielectric reflector. The wave propagates

through free space (Region i) at the speed of light c and is

normally incident on the slab at zl=lO centimeters. The

slab is 14-cm thick (Region If) and is backed by free space

(Region III). As stated by equation (2.10), the ratio of

the amplitude of the field reflected by the dielectric slab

24



to the amplitude of the field incident at z=z 1 is called the

reflection coefficient v of the uniform dielectric slab. We

should note by equation (3.16) that V is the reflection

coefficient pertaining t0_z:0 and takes into account the

effect of the propagation path from 0 to z I. The effects of

the back of the slab are attenuated and not seen. The wave

is incident and reflected at the z=z I interface, which is

the turning point for the dielectric layer. The magnitude

and phase of the reflection coefficient for the uniform

dielectric lamer are shown in figures 9 and i0,

respectively, for 74 to 76 GHz. The phase plot is relative

to the phase at 74 GHz. These reflection coefficient data

were transformed and windowed with the resulting time domain

response of the lamer as shown in figure ii. The response is

shifted to the left of time t=0 and the shift is the

propagation delay of the wave. Note that this delay is

measured on the negative side of the time axis and has

negative values. Due to the truncated frequency domain,

ringing is associated with the time domain response. A

Kaiser-Bessel window [10] was chosen and the frequency data

were multiplied by the real Kaiser-Bessel weights to emulate

a pulse train with very low sidelobes or "ringing" between

pulses. Sidelobes can limit the dynamic range of the time

domain measurement by hiding low-level responses within the

sidelobes of the higher level responses.

To estimate the location of the turning point, the time

for the wave to travel to the turning point had to be

determined. The time domain response was used to calculate

this propagation time. In figure 12, we see the transformed

reflection coefficient for -2 to 2 nanoseconds plotted with

the effective transmitted pulse (i.e., the transformed

Kaiser-Bessel window) as a reference centered at t=0. The

time shift between the two plots corresponds to the

round-trip propagation delay for the wave and is labeled

25



2td, where td is the one-way propagation delay measured on

the negative side of the time axis. Since the wave

traveled at the speed of light c in Region I and td was

measured to be .3352 nanoseconds, the wave traveled I0 cm

before it was reflected. This is in agreement with the

geometry of the problem, where the turning point is located

at z=z I (Zl=lO cm).

4.2 Plasma Layer

For the plasma layer the turning point is located

within the layer. To estimate the turning point distance,

the velocity through the plasma must be obtained. This

suggests a problem since the plasma is modeled as a

inhomogeneous dielectric and the velocity of the propagating

wave is dependent on the permittivity of the medium. Some

means must be found to approximate the velocity profile. A

possible solution is to assume that regions of the plasma

profile are piecewise linear to find average velocities for

each such region. To approach this problem, let us look at

the linear layer discussed in section 3.2. The electron

density profile of the layer bounded on both sides by free

space is shown in figure 6. The phase velocity through the

layer is

C

Vp(Z) =
(4.35)

The group velocity which describes the transport of energy

is related to the phase velocity and is
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2

Vg(Z) = - c
v (z)
P

(4.36)

At the front interface of the layer (z=z I) the relative

permittivity is that of free space and is equal to one. The

group velocity there is simply the speed of light c. As the

wave travels through the layer, it encounters greater

electron density N values and its group velocity decreases.
e

When the electron density is large enough, the relative

dielectric constant c vanishes in equation (2.6) and the
r

phase velocity becomes infinite forcing the group velocity

in equation (4.36) to become zero. Note that this occurs at

the turning point. It is, therefore, possible to assume that

the average group velocity, as the wave propagates from the

front interface to the turning point, is c/2. For

investigations of wave propagation in a linear layer plasma,

such an assumption is, therefore, quite permissible. However,

as the plasma becomes nonlinear, the c/2 assumption becomes

less accurate.

To illustrate this point, shown in figure 2 is an

electron density profile which is consistent with the MRIS

experiment that is being simulated. As an example, let us

assume the profile to be linear for electron densities less

than 1.00xlO14/cm 3. We will assume this to be true only for

this region in order to derive an average group velocity for

the region. Note that for electron densities less than

1.00xlO14/cm 3 the critical frequency is less than 90 GHz by

equation (2.5). For this region, as before, the average

group velocity is approximated as c/2. For 74 to 76 GHz, the

time domain response was obtained. With this result, the

turning point was estimated at .77 cm. This is in

reasonable agreement with the exact location of .87 cm It

should be emphasized that this approach was given here as an
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example and that a better approximation could be made by

further segmenting the same region to find more accurate

velocity values. Such further segmenting would require

additional measurements at frequencies below 74 GHz.
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SECTION 5

PLASMA FLUCTUATIONS

5.1 Background

In the previous chapter we synthesized the effective

time domain reflectometry response of a plasma using a range

of transmitted microwave frequencies. These results as a

whole gave us an estimate for the location of the critical

electron densities in static plasma models. However,

macroscopic effects of electron density fluctuations, which

are not included in standard aerothermodynamic simulations,

may have a noticeable effect on hypersonic reentry flow

fields [12]. In order to monitor these effects, we will

extend the foregoing discussion on the propagation of waves

through static plasma models. Thus, we consider the

important effects of time-dependent electron density

fluctuations on the time domain response of a plasma.

Fluctuation of the profile results in motion of the

turning point and is emulated between frequency step

measurements. Motion occurs between frequency step

measurements, assuming that each individual measurement is

accurate at each step. Two Doppler effects resulting in

motion are studied; the first type of motion involves

reducing the electron density profile while preserving the

shape of the profile and the second type of motion involves

modulating the density profile. The first effect is

demonstrated in figure 13 where a sample electron density

profile is reduced, moving the turning point from h I to h 2

and then h 3. The second effect can be seen in figure 14

after the same electron density profile is modulated. Two

different rippled profiles are shown moving the turning

point from d I to d 2. Both effects are applied
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incrementally between frequency steps and consequently

results in erratic motion of the turning point. The

nonuniform motion of the turning point is estimated by

calculating the location of the turning point at specific

times during the measurement period. These discrete

calculations give an indication of the overall motion of the

turning point caused by the two effects. Turning point

velocities achieved are significantly less than predicted

flow field Mach velocities of hypersonic reentry vehicles

[13].

5.2 Reduction of Electron Density Profile

The first type of motion resulted by reducing the given

electron density profile values of figure 2 by percentages

without changing the shape of the profile. Shown in figure

15 are the time domain responses for three electron density

profiles for 74 to 76 GHz. Time t=O corresponds to the

location of the time domain response of the window used.

The first profile has i00 percent density values, the second

has 95 percent values and the third has 90 percent values.

It is evident that the responses shift toward the left,

moving the turning point left of time t=O, with decreasing

percentages. To understand the displacement of the turning

point, the location of the turning point was calculated for

the I00 percent case and the 90 percent case at 75 GHz. By

using equations (2.5) and (2.6), the turning point moved

.13 cm for the 10 Percent variation in the profile. Using

the dwell time of 2.5 milliseconds for the proposed MRIS

instrument 3, a turning point velocity of .52 meters per

second was computed.

3
MRIS Experiment Requirements Document (ERD)
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To emulate a moving profile response, where the turning

point moves as the frequency is stepped from 74 to 76 GHz,

the profile was reduced from i00 percent to 90 percent. The

time domain response for this emulated variation in the

profile is shown in figure 16, left of & static 95 percent

profile response. The 95 percent profile response is

considered to be the response at which the turning point is

at its average position for the 10 percent variation in the

profile. A shift between this average and emulated response

of .17 nanoseconds was computed. By using an average

velocity of c/2, the turning point was found to have shifted

1.28 cm in comparison to the variation in the static profile

turning point of .13 cm. This significant increase in

profile shift due to the media motion is a major potential

error.

5.3 Modulation of Electron Density Profile

For the second type of motion investigated, modulation

was introduced into the profile. An expression is written

in the form

1 + A cos(Kz + w) (5.1)

where A is the amplitude, w is the phase of the modulating

wave, and K is the spatial wavenumber defined as

2_
K = , (5.2)

;r

where 2 is the spatial wavelength. This function was used

to modulate the profile. By varying the phase W of this
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function, the disturbance described by equation (5.1) was

set into motion and traveled across the profile.

A modulating wave with an amplitude of .05 and a

wavelength of 2 cm was chosen. To mimic a modulation

velocity of 2 meters per second, the phase _ of equation

(5.1) was varied from 0 ° to 90 ° as the frequency was stepped

from 74 to 76 GHz. The time domain response is shown in

figure 17. By squaring the transform reflection coefficient

in figure 17, the power distribution in the time domain can

be viewed. The power distribution for the response in

figure 17 is shown in figure 18. Greater modulation

velocities up to 8 meters per second were investigated and

results for the reflection coefficient and the power

distribution are shown in figures 19 and 20, respectively.

Further work was done for 140 to 142 GHz with the same

modulating wave to illustrate greater effects at higher

frequencies, the transform reflection coefficients were

determined, and the associated power distributions are

shown in figures 21 and 22. In addition, for 74 to 76 GHz

the amplitude of the modulation was raised to .25 and

results-are shown in figures 23 through 25.

Smearing and shifting of the time domain reconstruction

is quite evident for the cases studied. For example, at 140

to 142 GHz the response maximum moved from -I nanoseconds to

-2.4 nanoseconds as the modulation velocity was increased

from .22 meters per second to 3.33 meters per second (see

figures 21 and 22), and as the velocity was increased further

to 8 meters per second, the response became more smeared and

shifted with multiple echoes (see figure 22d). Various

methods for finding the turning point from these responses

can be employed. Two approaches are presently realizable;

one approach involves finding the peak power level and

designating it as the location of the turning point and

another approach involves finding the centroid of the
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area under the power distribution plot, where the centroid

would mark the location of the turning point. There are

a few problems with these approaches. Smearing of the time

domain response results in several peaks which may be used

to define the turning point, limiting the accuracy of the

first approach. Shifting of the response centroid would

also limit the success of the centroid approach. Using the

previous example for 140 to 142 GHz, the centroid of the

distribution moves from -I nanosecond to -2.6 nanoseconds as

the modulation velocity is increased from .22 to 3.33 meters

per second.

From the results presented, a limitation of 2.67 meters

per second on the turning point velocity is estimated for

the accuracy of the instrument at 140 to 142 GHz with

modulation amplitude A=.05. For 74 to 76 GHz with

modulation amplitude A=.25, it is estimated that there

is potential error with turning point velocities greater

than 4.67 meters per second.

The following conclusions should be kept in mind when

assessing the location of the turning point:

I. Amplitude fluctuations in the electron density profile

cause a shift or delay in the effective time domain

response.

2. Smearing of the time domain response, creating multiple

peaks, becomes significant for rapid fluctuations in the

electron density profile.

3. Strategies for locating the turning point can be chosen

to possibly minimize adverse effects resulting in shifting

and smearing of the time domain response.
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SECT ION 6

CONCLUDING REMARKS -

The results of studying the effects of moving electron

density fluctuations on frequency generated time-domain

reflectometry in a one'dimensional plasma layer have been

presented. On the basis of the studies made and the data

obtained, the following remarks and conclusions may be made:

(a) Different models for a plasma layer have been developed

and discussed in length.

(b) Equations describing wave propagation through different

plasma models have been formulated.

(c) The computer program synthesizes, using 64 frequencies,

the time domain response of a given plasma electron

density profile. A linear profile with an exact

solution (Airy solution) compared accurately with

the program's numericai Runge-Kutta solution. A

uniform dielectric slab with a known turning point was

also used successfully to verify the code.

(d) The average velocity of an electromagnetic wave

propagating through plasma must be accurately estimated

to determine the location of critical electron

densities.

(e) Varying electron density levels corrupt time domain

and distance measurements. In this work it has been

shown that lowering or reducing the electron density

levels of a given electron density profile, while

maintaining the shape of the profile as in figure 13,

34



(f)

(g)

results in motion of the turning point, and the

effective motion has a significant effect on measuring

critical electron density locations.

Modulating an electron density profile with a waveform

creates a disturbance or ripple adversely affecting the

time domain response of a plasma. Waveforms with phase

variations emulating motion across the profile were

used and greatly influenced simulated measurements,

especially for rapid phase variations.

A technique such as the centroid method for locating

the turning point may b e used to reduce the effects of

electron density fluctuations on turning point

estimates.

All of these issues, and perhaps more which now remain

unidentified, must be addressed and quantified in order to

arrive at an estimate of the usefulness of time domain

reflectometry for locating critical electron densities in

plasma.

A 10 percent reduction of the electron density profile

as described in section 5.2 shifts the turning point

significantly and may contribute to error. By modulating

the electron density profile as in section 5.3, there is a

potential for error when turning point velocities greater

than 2.67 meters per second are achieved at 140 to 142 GHz

with modulation amplitude A=.05. For 74 to 76 GHz with

modulation amplitude A=.25, turning point velocities greater

than 4.67 meters per second may also induce errors. It must

be concluded that a distance-measuring scheme using time

domain reflectometry (i.e., MRIS) could become inaccurate if

some of the plasma fluctuations investigated in this paper

are encountered. It has been the intent of this paper to
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help identify and possibly solve similar induced errors

should they occur.
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Appendix

Time Domain Theory

Time domain theory plays an important role in the MRIS

distance-measurlng technique. The response of plasma to a

time domain signal is used to estimate distances to critical

electron densities, Plasma reflection information in the

frequency domain is taken and transformed to the time domain

where propagation delays are measured to calculate these

distances. In this process, a frequency down conversion

takes place so that the resulting time domain response

emulates a baseband continuous wave signal. Further, an I,Q

(In-phase, @uadrature) detector is used to construct the

time domain signal. Processing of this signal is done in

the form of windowing to reduce unwanted interference.

To understand exactly how an I,Q detector can obtain a

time domain response by only using discrete samples of

amplitude and phase in the frequency domain, consider first

the problem in reverse. Let a transmitted periodic pulse

train in the time domain be represented by the signal

M+k _ - (M+k) - in_ t
f(t) = _ ane-inot + Y. a e o

n=M n=-M n
(A.I)

with

o = 2"/To (A. 2)

where a is complex and T is the period. The signal is
n o

real and periodic with 2k spectral components, where k is

the number of spectral lines in the positive or negative
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frequency domains. The amplitude spectrum starts with aM in

the positive frequency domain and a_M in the negative

frequency domain. M is chosen here as an arbitrary
#

constant. Let n=-n in the second summation and drop the

primes. The signal becomes one summation

M+k

f(t) = nE [a + a_ne o ]M ne-in_Oot in_ t
(A.3)

Let a_n= an so that f(t) is real, then

f(t) : n:M_ (an+a)cos n_ot- i(an-a n )sin n_ot (A.4)

Further, let

and

An = an + an (A. 5)

Bn n

To make a frequency down coversion of the signal we

start by introducing the slnusoidal tone cos p_ot. For any

p where

M -< p -< M+k and k < M

multiply both sides by cos p_o t, thus
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M+k

f(t)cos p_ t = E t|A (cos n_ t'cos p_o t)o n:M n o

- Bn(sin n_ot'Cos P_ot)]

M+k

=E

n=M
[_ [c°s(n-p)_°t + cos(n+P)_ot ]

in(n+P)_ot + sin(n-P)_ot

(A.7)

Low pass filtering this response for frequencies less than

2M_o.We obtain a filtered version of f(t)cos p_ t aso

LPF (t)cos p_o t = E cos(n-p)_ t - n sin(n-P)_ot .
n:S o -Z

(A. 8)

where LPF denotes the low-pass filtering. The frequencies

present range from 0 to k_ .
o

Now let f(t)cos p_ t be placed in a narrow band low
0

pass filter such that frequencies of _ and above are
0

completely cut off. Then all of the terms in the summation

except for n=p are suppressed and

A

BPF [f(t)cos P_ot] = _ (A.9)

where BPF denotes the bandpass filter. This signal would be

detected in the I (In-phase) channel of an I,Q synchronous

detector with the heterodyne frequency being P_o' or
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equivalently in a homodyne synchronous detector if the

signal f(t) represented a single frequency signal of

frequency p_ rather than a pulse train signal.
o

To find the output of the Q (@uadrature) channel

multiply f(t) by sin p_ t.
o

Similarly we find

M+k
e-

f (t)sin p_ t = _. IA n_ t'sin p_ to n c°s o o

n=M

- Bnsin n_ot'sln P_otl

M+k

]n=M in (n+P) _ot + sin (P-n) _ot

- Bn[c°s-_L (P-n)_°t - cos(n+P)_ot]]

(A.10)

After filtering out frequencies less than 2M_
o

M+k [_on B
If 1 nLPF (t)sin p_o t = _. A sin(p-n)_ t

n=M o 2

and after cutting off at _ and above
o

B

BPF [f(t)sin p_otl= --_2 (A. 12)

The quantity -Bp/2 is then the output of the Q channel.
If
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the medium (plasma) being probed is not dependent on time,

then the sequence of, essentially d.c. measurements, A and
P

B would be completely sufficient for the construction of
P

f(t).

With the construction of f(t) by the I,Q detector,

further processing is done to eliminate interference. To

show how this is done, consider a real function, later to be

called a "window" function

M+k

w(t) : _. W cos n_ t (A. 13)
n=M n o

and form another function

To/2

g(t) : S

-To/2

f (T)w(t-T) dT (A. 14)

where

-T T
2- o o

: -- for all - -< t -< --
To _ 2 2

O

Let g(t) be periodic with period T O so that

To/2 M+k

g(t) = _ [ nE::MAncos ne T-o

-To/2

Bnsin n_oT ]

M+k

[ T. W cos m_ (t-T)] dT
m=M m o
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M+k M+k
=r. r.

n=M m=M
nWnCOS n_ T'cos me (t-T)o o

-T /2
o'

- [BnWnsin n_oV'COS meo (t-T)]]dT

The first term can be expanded where

(A. 15)

COS n_ T'cos m_ (t-x) =
o o

[I i ]COS m_ot _cos (n-m)_oT + _cos (n+m)COoT

[' ]+ sin meot _sin(m+n)_ v + 10 2S in (m-n) _ov

(A. 16 )

Note that integration over a complete period z causes all

terms to vanish except those where m=n. Expansion of the

second term in equation (A. 15) gives a similar result.

Thus,

T M+k
o

g (t) = E
n=M

Wn {AnCOS n_ t-Bo nSin n_ot }. (A. 17)

multiplication term-by-term of the Fourier series

representing f(t) by Wn, produces the Fourier series of g(t)

given by equation (A. 14). Thus, any pulse train described by

a se% of A "s and B "s and, hence, f(t) can be transformed
n n

into another pulse train with a differently shaped pulse by

multiplying each term in the Fourier series by W
P

As an example of how a signal f(t) is windowed, let a

set of An°S and Bn'S be chosen arbitrarily and let

A =i/k for all M_nSM+k and B =0 for all such n. Thus, using
n n
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equations (A.5) and (A.6) in equation (A.4) gives

i

M+k

= _ _cos n_ t (A. 18)f(t)
n=M _K) o

Note that f(t) is clearly periodic with period 2-/_ and has
o

equally weighted spectral components. Consider the function

f(t) for --/_oStS-/_ O. In order to illustrate the windowed

function f(t), consider a limiting form for this function

obtained by letting _o*0, M*_, k*_ in a certain way so that

the number of components in the spectrum becomes infinite.

We first write

M+k M+k _ T

oof(t) = E cos n_ t = _. _ T k cos n_ t (A. 19)
n=M o nzM o o o '

SO
TO M+k 2-

f(t) = 2-_ _ (cos n_ t)_ ° T = --
n= M o ' o _o

(A.20)

Then let _ _0, M*_, k*_ such that
O

O
(A. 21)

:A_
0

(A. 22)

M_o:n I (A. 23)

(M+k)_o=n 2

T
O

-_ = T =

2it

We can write fl(t) for this limiting case

(A.24)

(A. 25)
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n2

fl (t) = 2-6 COS _t de

n I

T ! Isin n2 t _ sin _I t]2- t

(A. 26)

Now

sin _2t - sin _It = 2 in t
2

cos t

(A. 27 )

so the limiting form of f(t) is

Is n2-(_l t1T [f)2-_l I in
fl (t) = __o 2

" 2 02_01 cos

2 t

2 t , (A. 28)

a carrier at (_I+_2)/2 modulated by a sinc function whose

first zero is at t= 2-/(n2-nl). The limiting form of the

pulse in equation (A. 28) may be repeated such that

f(t+nT o) _ f(t) for all integer n. In reality this limiting

form of the pulse shape is not achieved. We must really

deal with the finite sum and finite _ of equation (A. 18).
o

Thus, the "sinc" modulation is only suggestive of what the

actual pulse shape using finite e will be.
o

The use of no window implies that we are using a pulse

train exactly given by equation (A. 18), which in the

limiting case looks llke a "sinc"-modulated carrier pulse

train given by equation (A.28). Other shaped pulse trains

can be produced by windowing f(t), to give
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M+k
q

g(t) = T. W • ,_-cos n_ t
n=M n _ o

(A.29)

The Kaiser-Bessel set of frequency weights W gives a well
n

defined pulse shape that is nearly zero over most of the T
o

period except for the desired pulse itself. Equation (A. 18)

or (A. 29) may be considered as the transmitted signal at

some reference point (reference plane, antenna terminals,

etc.). This transmitted signal will propagate into the

plasma medium and result in a scattered electromagnetic

field which will then appear at the same reference point.

One should expect for a frequency dependent medium such as

a plasma, that the scattered signal will be distorted as

well as delayed with respect to the transmitted pulse train.

The effect of the medium will appear in the measured

reflection coefficient at the reference point for each

constituent frequency in the signal. This set of reflection

coefficients can be determined in principle by homodyne

synchronous (I,Q) detection of the received signal at each

of the stepped radio frequencies and normalization by the

magnitude of the transmitted signal. The preceding

discussion, thus, shows that the response of a time

independent, but frequency dispersive plasma medium to a

time domain pulse train signal, can be rigorously emulated by

a sequence of frequency doma/_n measurements taken one

frequency at a time.

If R is the complex reflection coefficient at
n

frequency n_ o, then the effective received time domain

signal fR(t) due to equation (A. 18) is
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M+k - (M+k) into t
fR(t) = I E R e-ingot + 1 E R e-

n=M n n=-M n

where

M+k

= E .._Rn_cos(n_ t + n-_)
n=M o

@n= tan-if Im (Rn) ]
Re (Rn

(A. 30)

*. ThusNote that Rn is complex and that we take R_n=R n

fR(t) is real. As written, equation (A. 30) is the response

of the medium to a pulse train that resembles the "sinc"

modulated pulse train form of equation (A. 28). A "window"

sequence Wn can be applied at this point to give the

received windowed signal fRW' which may be written as

M+k

fRw(t) = _=M nnR W e-in_ t +
(M+k) - in_ tR We o

n=-M n n

M+k

: _ Wn _Rnl cos(n_ t + Cn ) (A. 31)
n=M o '

where @n is the same as in equation (A. 30) and Wn-=W_n. Note

again that each Rn is measured essentially as a (complex)

d.c. quantity even though the value of R is that
n

appropriate for the response of the medium at frequency n_ .
o

Since we are interested primarily in the time delays

associated with the received signals in order to measure

distances to the turning point, we are not really interested
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in the radio frequency behavior of fRw(t) of equation
(A.31). Without any loss of desired information, we can set

M=0 in equation (A.31) and emulate a baseband pulse train

which represents the envelope of the received signal. The

final version of the emulated received signal is a received,

windowed, baseband signal fRWB' written as

fRWB (t)

k ingot 1 _k INn _n e-in_° t= 1 E O4n_ne- +
n=0 n=0

with

k

= _ 04 i_n _ cos(n_ot + _n ) (A.32)
n=0 n

where

_n=RM+n

-I
= tan

n I Im(_n) ]
Re (IRn )

(A. 33)

and

O4n=WM+ n (A. 34 )

The baseband transmitted pulse train may be represented by

equation (A. 13) as

k

gt_s = Z I]4cos n_ t
n-0 n o

(A. 35)
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Equation (A. 32) will be a distorted and delayed version of

equation (A. 35). The comparison of the delay between the

two equations represents the distance measurement. The left

side of equation (A.32) can either be obtained by the

indicated summation for any t or by using the inverse

discrete Fourier transform on the compieX amplitudes •
n n

The direct evaluation of equations (A.32) and (A. 35) can

produce the values of fRWB(t) for any value of t, so that a

smooth curve can be obtained. The discrete Fourier

transform also tends toward a smooth curve if the number

of points is increased in the transform by adding zeroes for

higher frequencies. The zero padded transform does an

interpolation between points that is just what the Fourier

series of equation (A.32) produces directly.
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TABLE I

REFLECTION COEFFICIENTS AT FRONT

INHOMOGENEOUS LAYER-LINEAR
i

mill

RunEe-Kutta

Frequency (GHz)

74.0000

0317

0635

o9 2

1270

1587

1905

2222

74

74

74

74

74

74

74

74.2540

74.2857

74.3175

74.3492

74.3810

74.4127

74.4444

74.4762

74.5079

74.5397

74.5714

74.6032

74.8349

74 6667

74 6984

74 7302

74 7619

74 7937

74 8254

Real

1 0000

0 9682

0 8746

0 7252

0 5294

0 2996

0 O504

-0 2023

-0 4422

-0 6538

-0 8235

-0 9401

-0 9957

-0 9867

-0 9132
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